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1 Abstract1

A cornerstone of theoretical neuroscience is the circuit model: a system of equations that captures2

a hypothesized neural mechanism. Such models are valuable when they give rise to an experimen-3

tally observed phenomenon – whether behavioral or in terms of neural activity – and thus can offer4

insights into neural computation. The operation of these circuits, like all models, critically depends5

on the choices of model parameters. Historically, the gold standard has been to analytically derive6

the relationship between model parameters and computational properties. However, this enterprise7

quickly becomes infeasible as biologically realistic constraints are included into the model increas-8

ing its complexity, often resulting in ad hoc approaches to understanding the relationship between9

model and computation. We bring recent machine learning techniques – the use of deep generative10

models for probabilistic inference – to bear on this problem, learning distributions of parameters11

that produce the specified properties of computation. Importantly, the techniques we introduce12

offer a principled means to understand the implications of model parameter choices on compu-13

tational properties of interest. We motivate this methodology with a worked example analyzing14

sensitivity in the stomatogastric ganglion. We then use it to generate insights into neuron-type15

input-responsivity in a model of primary visual cortex, a new understanding of rapid task switch-16

ing in superior colliculus models, and attribution of error in recurrent neural networks solving a17

simple mathematical task. More generally, this work suggests a departure from realism vs tractabil-18

ity considerations, towards the use of modern machine learning for sophisticated interrogation of19

biologically relevant models.20

1

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/837567doi: bioRxiv preprint first posted online Nov. 11, 2019; 

http://dx.doi.org/10.1101/837567
http://creativecommons.org/licenses/by-nc/4.0/


2 INTRODUCTION

2 Introduction21

The fundamental practice of theoretical neuroscience is to use a mathematical model to understand22

neural computation, whether that computation enables perception, action, or some intermediate23

processing [1]. A neural computation is systematized with a set of equations – the model – and24

these equations are motivated by biophysics, neurophysiology, and other conceptual considerations.25

The function of this system is governed by the choice of model parameters, which when configured26

in a particular way, give rise to a measurable signature of a computation. The work of analyzing a27

model then requires solving the inverse problem: given a computation of interest, how can we reason28

about these particular parameter configurations? The inverse problem is crucial for reasoning about29

likely parameter values, uniquenesses and degeneracies, attractor states and phase transitions, and30

predictions made by the model.31

Consider the idealized practice: one carefully designs a model and analytically derives how model32

parameters govern the computation. Seminal examples of this gold standard (which often adopt33

approaches from statistical physics) include our field’s understanding of memory capacity in asso-34

ciative neural networks [2], chaos and autocorrelation timescales in random neural networks [3],35

the paradoxical effect [4], and decision making [5]. Unfortunately, as circuit models include more36

biological realism, theory via analytical derivation becomes intractable. This creates an unfavor-37

able tradeoff. On the one hand, one may tractably analyze systems of equations with unrealistic38

assumptions (for example symmetry or gaussianity), producing accurate inferences about param-39

eters of a too-simple model. On the other hand, one may choose a more biologically accurate,40

scientifically relevant model at the cost of ad hoc approaches to analysis (such as simply examining41

simulated activity), potentially resulting in bad inferences and thus erroneous scientific predictions42

or conclusions.43

Of course, this same tradeoff has been confronted in many scientific fields characterized by the44

need to do inference in complex models. In response, the machine learning community has made45

remarkable progress in recent years, via the use of deep neural networks as a powerful inference46

engine: a flexible function family that can map observed phenomena (in this case the measurable47

signal of some computation) back to probability distributions quantifying the likely parameter48

configurations. One celebrated example of this approach from machine learning, of which we49

draw key inspiration for this work, is the variational autoencoder [6, 7], which uses a deep neural50

network to induce an (approximate) posterior distribution on hidden variables in a latent variable51
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2 INTRODUCTION

model, given data. Indeed, these tools have been used to great success in neuroscience as well,52

in particular for interrogating parameters (sometimes treated as hidden states) in models of both53

cortical population activity [8, 9, 10, 11] and animal behavior [12, 13, 14]. These works have used54

deep neural networks to expand the expressivity and accuracy of statistical models of neural data55

[15].56

However, these inference tools have not significantly influenced the study of theoretical neuroscience57

models, for at least three reasons. First, at a practical level, the nonlinearities and dynamics of58

many theoretical models are such that conventional inference tools typically produce a narrow59

set of insights into these models. Indeed, only in the last few years has deep learning research60

advanced to a point of relevance to this class of problem. Second, the object of interest from a61

theoretical model is not typically data itself, but rather a qualitative phenomenon – inspection of62

model behavior, or better, a measurable signature of some computation – an emergent property of63

the model. Third, because theoreticians work carefully to construct a model that has biological64

relevance, such a model as a result often does not fit cleanly into the framing of a statistical model.65

Technically, because many such models stipulate a noisy system of differential equations that can66

only be sampled or realized through forward simulation, they lack the explicit likelihood and priors67

central to the probabilistic modeling toolkit.68

To address these three challenges, we developed an inference methodology – ‘emergent property69

inference’ – which learns a distribution over parameter configurations in a theoretical model. This70

distribution has two critical properties: (i) it is chosen such that draws from the distribution (pa-71

rameter configurations) correspond to systems of equations that give rise to a specified emergent72

property (a set of constraints); and (ii) it is chosen to have maximum entropy given those con-73

straints, such that we identify all likely parameters and can use the distribution to reason about74

parametric sensitivity and degeneracies [16]. First, we stipulate a bijective deep neural network that75

induces a flexible family of probability distributions over model parameterizations with a probabil-76

ity density we can calculate [17, 18, 19]. Second, we quantify the notion of emergent properties as a77

set of moment constraints on datasets generated by the model. Thus, an emergent property is not a78

single data realization, but a phenomenon or a feature of the model, which is ultimately the object79

of interest in theoretical neuroscience. Conditioning on an emergent property requires a variant of80

deep probabilistic inference methods, which we have previously introduced [20]. Third, because we81

can not assume the theoretical model has explicit likelihood on data or the emergent property of82

interest, we use stochastic gradient techniques in the spirit of likelihood free variational inference83
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3 RESULTS

[21]. Taken together, emergent property inference (EPI) provides a methodology for inferring pa-84

rameter configurations consistent with a particular emergent phenomena in theoretical models. We85

use a classic example of parametric degeneracy in a biological system, the stomatogastric ganglion86

[22], to motivate and clarify the technical details of EPI.87

Equipped with this methodology, we then investigated three models of current importance in the-88

oretical neuroscience. These models were chosen to demonstrate generality through ranges of89

biological realism (from conductance-based biophysics to recurrent neural networks), neural sys-90

tem function (from pattern generation to abstract cognitive function), and network scale (from91

four to infinite neurons). First, we use EPI to produce a set of verifiable hypotheses of input-92

responsivity in a four neuron-type dynamical model of primary visual cortex; we then validate93

these hypotheses in the model. Second, we demonstrated how the systematic application of EPI to94

levels of task performance can generate experimentally testable hypotheses regarding connectivity95

in superior colliculus. Third, we use EPI to uncover the sources of error in a low-rank recurrent96

neural network executing a simple mathematical task. The novel scientific insights offered by EPI97

contextualize and clarify the previous studies exploring these models [23, 24, 25, 26], and more gen-98

erally, these results point to the value of deep inference models for the interrogation of biologically99

relevant models.100

We note that, during our preparation and early presentation of this work [27, 28], another work101

has arisen with broadly similar goals: bringing statistical inference to mechanistic models of neural102

circuits [29, 30]. We are encouraged by this general problem being recognized by others in the103

community, and we emphasize that these works offer complementary neuroscientific contributions104

(different theoretical models of focus) and use different technical methodologies (ours is built on105

our prior work [20], theirs similarly [31]). These distinct methodologies and scientific investigations106

emphasize the increased importance and timeliness of both works.107

3 Results108

3.1 Motivating emergent property inference of theoretical models109

Consideration of the typical workflow of theoretical modeling clarifies the need for emergent prop-110

erty inference. First, one designs or chooses an existing model that, it is hypothesized, captures111

the computation of interest. To ground this process in a well-known example, consider the stom-112

atogastric ganglion (STG) of crustaceans, a small neural circuit which generates multiple rhythmic113
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Figure 1: Emergent property inference (EPI) in the stomatogastric ganglion. A. For a choice of

model (STG) and emergent property (network syncing), emergent property inference (EPI, gray

box) learns a distribution of the model parameters z = [gel, gsynA] producing network syncing. In

the STG model, jagged connections indicate electrical coupling having electrical conductance gel.

Other connections in the diagram are inhibitory synaptic projections having strength gsynA onto

the hub neuron, and gsynB = 5nS for mutual inhibitory connections. Network syncing traces are

colored by log probability of their generating parameters (stars) in the EPI-inferred distribution.

B. The EPI distribution of STG model parameters producing network syncing. Samples are colored

by log probability density. Distribution contours of emergent property value error are shown at

levels of 5× 10−7 and 1× 10−6 (dark and light gray). Eigenvectors of the Hessian at the mode of

the inferred distribution are indicated as v1 and v2. Simulated activity is shown for three samples

(stars). (Inset) Sensitivity of the system with respect to network syncing along all dimensions of

parameter space away from the mode. (see Section B.2.1). C. Deep probability distributions map

a latent random variable w through a deep neural network with weights and biases θ to parameters

z = fθ(w) distributed as qθ(z). D. EPI optimization: To learn the EPI distribution qθ(z) of

model parameters that produce an emergent property, the emergent property statistics T (x) are

set in expectation over model parameter samples z ∼ qθ(z) and model simulations x ∼ p(x | z) to

emergent property values µ.
5
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3.1 Motivating emergent property inference of theoretical models 3 RESULTS

muscle activation patterns for digestion [32]. Despite full knowledge of STG connectivity and a114

precise characterization of its rhythmic pattern generation, biophysical models of the STG have115

complicated relationships between circuit parameters and neural activity [22, 33]. A model of the116

STG [23] is shown schematically in Figure 1A, and note that the behavior of this model will be crit-117

ically dependent on its parameterization – the choices of conductance parameters z = [gel, gsynA].118

Specifically, the two fast neurons (f1 and f2) mutually inhibit one another, and oscillate at a faster119

frequency than the mutually inhibiting slow neurons (s1 and s2), and the hub neuron (hub) couples120

with the fast or slow population or both.121

Second, once the model is selected, one defines the emergent property, the measurable signal of122

scientific interest. To continue our running STG example, one such emergent property is the123

phenomenon of network syncing – in certain parameter regimes, the frequency of the hub neuron124

matches that of the fast and slow populations at an intermediate frequency. This emergent property125

is shown in Figure 1A at a frequency of 0.54Hz.126

Third, qualitative parameter analysis ensues: since precise mathematical analysis is intractable in127

this model, a brute force sweep of parameters is done [23]. Subsequently, a qualitative description128

is formulated to describe the different parameter configurations that lead to the emergent property.129

In this last step lies the opportunity for a precise quantification of the emergent property as a130

statistical feature of the model. Once we have such a methodology, we can infer a probability131

distribution over parameter configurations that produce this emergent property.132

Before presenting technical details (in the following section), let us understand emergent property133

inference schematically: EPI (Fig. 1A gray box) takes, as input, the model and the specified134

emergent property, and as its output, produces the parameter distribution shown in Figure 1B.135

This distribution – represented for clarity as samples from the distribution – is then a scientifically136

meaningful and mathematically tractable object. In the STG model, this distribution can be specif-137

ically queried to reveal the prototypical parameter configuration for network syncing (the mode;138

Figure 1B yellow star), and how network syncing decays based on changes away from the mode.139

The eigenvectors (of the Hessian of the distribution at the mode) can be queried to quantitatively140

formalize the robustness of network syncing (Fig. 1B v1 and v2). Indeed, samples equidistant from141

the mode along these EPI-identified dimensions of sensitivity (v1) and degeneracy (v2) agree with142

error contours (Fig. 1B, contours) and have diminished or preserved network syncing, respectively143

(Figure 1B inset and activity traces). Further validation of EPI is available in the supplemen-144

tary materials, where we analyze a simpler model for which ground-truth statements can be made145
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3.2 A deep generative modeling approach to emergent property inference 3 RESULTS

(Section B.1.1).146

3.2 A deep generative modeling approach to emergent property inference147

Emergent property inference (EPI) systematizes the three-step procedure of the previous section.148

First, we consider the model as a coupled set of differential (and potentially stochastic) equations149

[23]. In the running STG example, its activity x = [xf1, xf2, xhub, xs1, xs2] is the membrane potential150

for each neuron, which evolves according to the biophysical conductance-based equation:151

Cm
dx

dt
= −h(x; z) = − [hleak(x; z) + hCa(x; z) + hK(x; z) + hhyp(x; z) + helec(x; z) + hsyn(x; z)]

(1)

where Cm=1nF, and hleak, hCa, hK , hhyp, helec, hsyn are the leak, calcium, potassium, hyperpolar-152

ization, electrical, and synaptic currents, all of which have their own complicated dependence on x153

and z = [gel, gsynA] (see Section B.2.1).154

Second, we define the emergent property, which as above is network syncing: oscillation of the155

entire population at an intermediate frequency of our choosing (Figure 1A bottom). Quantifying156

this phenomenon is straightforward: we define network syncing to be that each neuron’s spiking157

frequency – denoted ωf1(x), ωf2(x), etc. – is close to an intermediate frequency of 0.542Hz. Math-158

ematically, we achieve this via constraints on the mean and variance of ωα(x) for each neuron159

α ∈ {f1, f2, hub, s1, s2}, and thus:160

E [T (x)] , E


ωf1(x)

...

(ωf1(x)− 0.542)2

...

 =


0.542

...

0.0252

...

 , µ, (2)

which completes the quantification of the emergent property.161

Third, we perform emergent property inference: we find a distribution over parameter configura-162

tions z, and insist that samples from this distribution produce the emergent property; in other163

words, they obey the constraints introduced in Equation 2. This distribution will be chosen from164

a family of probability distributions Q = {qθ(z) : θ ∈ Θ}, defined by a deep generative distribution165

of the normalizing flow class [17, 18, 19] – neural networks which transform a simple distribution166

into a suitably complicated distribution (as is needed here). This deep distribution is represented167

in Figure 1C (see Section B.1). Then, mathematically, we must solve the following optimization168
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3.3 Comprehensive input-responsivity in a nonlinear sensory system 3 RESULTS

program:169

argmax
qθ∈Q

H(qθ(z))

s.t. Ez∼qθ
[
Ex∼p(x|z) [T (x)]

]
= µ,

(3)

where T (x), µ are defined as in Equation 2, and p(x|z) is the intractable distribution of data from170

the model, x, given that model’s parameters z (we access samples from this distribution by running171

the model forward). The purpose of each element in this program is detailed in Figure 1D. Finally,172

we recognize that many distributions in Q will respect the emergent property constraints, so we173

require a normative principle to select amongst them. This principle is captured in Equation 3 by174

the primal objective H. Here we chose Shannon entropy as a means to find parameter distributions175

with minimal assumptions beyond some chosen structure [34, 35, 20, 36], but we emphasize that176

the EPI method is unaffected by this choice (but the results of course will depend on the primal177

objective chosen).178

EPI optimizes the weights and biases θ of the deep neural network (which induces the probability179

distribution) by iteratively solving Equation 3. The optimization is complete when the sampled180

models with parameters z ∼ qθ produce activity consistent with the specified emergent property.181

Such convergence is evaluated with a hypothesis test that the mean of each emergent property182

statistic is not different than its emergent property value (see Section B.1.2). In relation to broader183

methodology, inspection of the EPI objective reveals a natural relationship to posterior inference.184

Specifically, EPI executes variational inference in an exponential family model, the sufficient statis-185

tics and mean parameter of which are defined by the emergent property statistics and values,186

respectively (see Section B.1.4). Equipped with this method, we now prove out the value of EPI by187

using it to investigate and produce novel insights about three prominent models in neuroscience.188

3.3 Comprehensive input-responsivity in a nonlinear sensory system189

Dynamical models of excitatory (E) and inhibitory (I) populations with superlinear input-output190

function have succeeded in explaining a host of experimentally documented phenomena. In a regime191

characterized by inhibitory stabilization of strong recurrent excitation, these models gives rise to192

paradoxical responses [4], selective amplification [37], surround suppression [38] and normalization193

[39]. Despite their strong predictive power, E-I circuit models rely on the assumption that inhibi-194

tion can be studied as an indivisible unit. However, experimental evidence shows that inhibition195

is composed of distinct elements – parvalbumin (P), somatostatin (S), VIP (V) – composing 80%196
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Figure 2: Hypothesis generation through EPI in a V1 model. A. Four-population model of primary

visual cortex with excitatory (black), parvalbumin (blue), somatostatin (red), and VIP (green)

neurons. Some neuron-types largely do not form synaptic projections to others (excitatory and

inhibitory projections filled and unfilled, respectively). B. Linear response predictions become

inaccurate with greater input strength. V1 model simulations for input (solid) h = b and (dashed)

h = b + dh. Stars indicate the linear response prediction. C. EPI distributions on differential

input dh conditioned on differential response B(α, y). Supporting evidence for the four generated

hypotheses are indicated by gray boxes with labels H1, H2, H3, and H4. The linear prediction

from two standard deviations away from y (from negative to positive) is overlaid in magenta (very

small, near origin).
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of GABAergic interneurons in V1 [40, 41, 42], and that these inhibitory cell types follow specific197

connectivity patterns (Fig. 2A) [43]. Recent theoretical advances [24, 44, 45], have only started198

to address the consequences of this multiplicity in the dynamics of V1, strongly relying on linear199

theoretical tools. Here, we go beyond linear theory by systematically generating and evaluating hy-200

potheses of circuit model function using EPI distributions of neuron-type inputs producing various201

neuron-type population responses.202

Specifically, we consider a four-dimensional circuit model with dynamical state given by the firing203

rate x of each neuron-type population x = [xE , xP , xS , xV ]>. Given a time constant of τ = 20 ms204

and a power n = 2, the dynamics are driven by the rectified and exponentiated sum of recurrent205

(Wx) and external h inputs:206

τ
dx

dt
= −x+ [Wx+ h]n+. (4)

The effective connectivity weights W were obtained from experimental recordings of publicly avail-207

able datasets of mouse V1 [46, 47] (see Section B.2.2). The input h = b + dh is comprised of a208

baseline input b = [bE , bP , bS , bV ]> and a differential input dh = [dhE , dhP , dhS , dhV ]> to each209

neuron-type population. Throughout subsequent analyses, the baseline input is b = [1, 1, 1, 1]>.210

With this model, we are interested in the differential responses of each neuron-type population to211

changes in input dh. Initially, we studied the linearized response of the system to input dxss
dh at the212

steady state response xss, i.e. a fixed point. All analyses of this model consider the steady state213

response, so we drop the notation ss from here on. While this linearization accurately predicts214

differential responses dx = [dxE , dxP , dxS , dxV ] for small differential inputs to each population215

dh = [0.1, 0.1, 0.1, 0.1] (Fig 2B left), the linearization is a poor predictor in this nonlinear model216

more generally (Fig. 2B right). Currently available approaches to deriving the steady state response217

of the system are limited.218

To get a more comprehensive picture of the input-responsivity of each neuron-type beyond linear219

theory, we used EPI to learn a distribution of the differential inputs to each population dh that220

produce an increase of y ∈ {0.1, 0.5} in the rate of each neuron-type population α ∈ {E,P, S, V }.221

We want to know the differential inputs dh that result in a differential steady state dxα (the change222

in xα when receiving input h = b+dh with respect to the baseline h = b) of value y with some small,223
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arbitrarily chosen amount of variance 0.012. These statements amount to the emergent property224

B(α, y) , E

 dxα

(dxα − y)2

 =

 y

0.012

 (5)

We maintain the notation B(·) throughout the rest of the study as short hand for emergent prop-225

erty, which represents a different signature of computation in each application. In each column of226

Figure 2C visualizes the inferred distribution, available through EPI, of dh corresponding to an227

excitatory (red), parvalbumin (blue), somatostatin (red) and VIP (green) neuron-type increase,228

while each row corresponds to amounts of increase 0.1 and 0.5. For each pair of parameters, we229

show the two-dimensional marginal distribution of samples colored by log qθ(dh | B(α, y)). The230

inferred distributions immediately suggest four hypotheses:231

232

H1: as is intuitive, each neuron-type’s firing rate should be sensitive to that neuron-type’s233

direct input (e.g. Fig. 2C H1 gray boxes indicate low variance in dhE when α = E. Same234

observation in all inferred distributions);235

H2: the E- and P-populations should be largely unaffected by input to the V-population (Fig.236

2C H2 gray boxes indicate high variance in dhV when α ∈ {E,P});237

H3: the S-population should be largely unaffected by input to the P-population (Fig. 2C H3238

gray boxes indicate high variance in dhP when α = S);239

H4: there should be a nonmonotonic response of the V-population with input to the E-240

population (Fig. 2C H4 gray boxes indicate that negative dhE should result in small dxV ,241

but positive dhE should elicit a larger dxV );242

We evaluate these hypotheses by taking steps in individual neuron-type input δhα away from the243

modes of the inferred distributions at y = 0.1244

dh∗ = z∗ = argmax
z

log qθ(z | B(α, 0.1)). (6)

Here δxα is the change in steady state response to the system with input h = b + dh∗ + δhαûα245

compared to h = b + dh∗, where ûα is a unit vector in the dimension of α. The EPI-generated246

hypotheses are confirmed:247

H1: the neuron-type responses are sensitive to their direct inputs (Fig. 3A black, 3B blue,248

3C red, 3D green);249

H2: the E- and P-populations are not affected by δhV (Fig. 3A green, 3B green);250

H3: the S-population is not affected by δhP (Fig. 3C blue);251
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H3

H2
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Figure 3: Confirming

EPI generated hy-

potheses in V1. A.

Differential responses

by the E-population to

changes in individual

input δhαûα away from

the mode of the EPI

distribution dh∗. B-D

Same plots for the P-,

S-, and V-populations.

Labels H1, H2, H3,

and H4 indicate which

curves confirm which

hypotheses.

H4: the V-population exhibits a nonmonotonic response to δhE (Fig. 3D black), and is in252

fact the only population to do so (Fig. 3A-C black).253

These hypotheses were in stark contrast to what was available to us via traditional analytical linear254

prediction (Fig. 2C, magenta). To this point, we have shown the utility of EPI on relatively low-255

level emergent properties like network syncing and differential neuron-type population responses.256

In the remainder of the study, we focus on using EPI to understand models of more abstract257

cognitive function.258

3.4 Identifying neural mechanisms of flexible task switching259

In a rapid task switching experiment [48], rats were explicitly cued on each trial to either orient260

towards a visual stimulus in the Pro (P) task or orient away from a visual stimulus in the Anti261

(A) task (Fig. 4a). Neural recordings in the midbrain superior colliculus (SC) exhibited two262

populations of neurons that simultaneously represented both task context (Pro or Anti) and motor263

response (contralateral or ipsilateral to the recorded side): the Pro/Contra and Anti/Ipsi neurons264

[25]. Duan et al. proposed a model of SC that, like the V1 model analyzed in the previous section, is265
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a four-population dynamical system. We analyzed this model, where the neuron-type populations266

are functionally-defined as the Pro- and Anti-populations in each hemisphere (left (L) and right267

(R)). The Pro- or Anti-populations receive an input determined by the cue, and then the left and268

right populations receive an input based on the side of the light stimulus. Activities were bounded269

between 0 and 1, so that a high output of the Pro population in a given hemisphere corresponds270

to the contralateral response. An additional stipulation is that when one Pro population responds271

with a high-output, the opposite Pro population must respond with a low output. Finally, this272

circuit operates in the presence of Gaussian noise resulting in trial-to-trial variability (see Section273

B.2.3). The connectivity matrix is parameterized by the geometry of the population arrangement274

(Fig. 4B).275

Here, we used EPI to learn distributions of the SC weight matrix parameters z = W conditioned276

on of various levels of rapid task switching accuracy B(p) for p ∈ {50%, 60%, 70%, 80%, 90%} (see277

Section B.2.3). Following the approach in Duan et al., we decomposed the connectivity matrix278

W = V ΛV −1 in such a way (the Schur decomposition) that the basis vectors vi are the same for all279

W (Fig. 4C). These basis vectors have intuitive roles in processing for this task, and are accordingly280

named the all mode - all neurons co-fluctuate, side mode - one side dominates the other, task mode281

- the Pro or Anti populations dominate the other, and diag mode - Pro- and Anti-populations of282

opposite hemispheres dominate the opposite pair. The corresponding eigenvalues (e.g. λtask, which283

change according to W ) indicate the degree to which activity along that mode is increased or284

decreased by W .285

EPI demonstrates that, for greater task accuracies, the task mode eigenvalue increases, indicating286

the importance of W to the task representation (Fig. 4D, purple). Stepping from random chance287

(50%) networks to marginally task-performing (60%) networks, there is a marked decrease of the288

side mode eigenvalues (Fig. 4D, orange). Such side mode suppression remains in the models achiev-289

ing greater accuracy, revealing its importance towards task performance. There were no interesting290

trends with task accuracy in the all or diag mode (hence not shown in Fig. 4). Importantly, we can291

conclude from our methodology that side mode suppression in W allows rapid task switching, and292

that greater task-mode representations in W increase accuracy. These hypotheses are confirmed by293

forward simulation of the SC model (Fig. 4E). Thus, EPI produces novel, experimentally testable294

predictions: increase in rapid task switching performance should be correlated with changes in295

effective connectivity resulting in an increase in task mode and decrease in side mode eigenvalues.296
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Figure 4: EPI reveals changes in SC [25] connectivity that control task accuracy. A. Rapid task

switching behavioral paradigm (see text). B. Model of superior colliculus (SC). Neurons: LP - left

pro, RP - right pro, LA - left anti, RA - right anti. Parameters: sW - self, hW - horizontal, vW

-vertical, dW - diagonal weights. C. The Schur decomposition of the weight matrix W = V ΛV −1 is

a unique decomposition with orthogonal V and upper triangular Λ. Schur modes: vall, vtask, vside,

and vdiag. D. The marginal EPI distributions of the Schur eigenvalues at each level of task accuracy.

E. The correlation of Schur eigenvalue with task performance in each learned EPI distribution.
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3.5 Linking RNN connectivity to error297

So far, each model we have studied was designed from fundamental biophysical principles, genetically-298

or functionally-defined neuron types. At a more abstract level of modeling, recurrent neural net-299

works (RNNs) are high-dimensional dynamical models of computation that are becoming increas-300

ingly popular in neuroscience research [49]. In theoretical neuroscience, RNN dynamics usually301

follow the equation302

dx

dt
= −x+Wφ(x) + h, (7)

where x is the network activity, W is the network connectivity, φ(·) = tanh(·), and h is the input to303

the system. Such RNNs are trained to do a task from a systems neuroscience experiment, and then304

the unit activations of the trained RNN are compared to recorded neural activity. Fully-connected305

RNNs with tens of thousands of parameters are challenging to characterize [50], especially making306

statistical inferences about their parameterization. Alternatively, we considered a rank-1, N -neuron307

RNN with connectivity308

W = gχ+
1

N
mn>, (8)

where χi,j ∼ N (0, 1
N ), g is the random strength, and the entries of m and n are drawn from Gaussian309

distributions mi ∼ N (Mm, 1) and ni ∼ N (Mn, 1). We used EPI to infer the parameterizations of310

rank-1 RNNs solving an example task, enabling discovery of properties of connectivity that result311

in different types of error in the computation.312

The task we consider is Gaussian posterior conditioning: calculate the parameters of a posterior313

distribution induced by a prior p(µy) = N (µ0 = 4, σ2
0 = 1) and a likelihood p(y|µy) = N (µy, σ

2
y =314

1), given a single observation y. Conjugacy offers the result analytically; p(µy|y) = N
(
µpost, σ

2
post

)
,315

where:316

µpost =

µ0
σ2
0

+ y
σ2
y

1
σ2
0

+ 1
σ2
y

σ2
post =

1
1
σ2
0

+ 1
σ2
y

. (9)

The RNN is trained to solve this task by producing readout activity that is on average the posterior317

mean µpost, and activity whose variability is the posterior variance σ2
post (Fig. 5A, a setup inspired318

by [51]). To solve this Gaussian posterior conditioning task, the RNN response to a constant input319

h(t) = yw + (n−Mn) must equal the posterior mean along readout vector r , where320

κr =
1

N

N∑
j=1

rjφ(xj) (10)

Additionally, the amount of chaotic variance ∆T must equal the posterior variance. Theory for321

low-rank RNNs allows us to express κr and ∆T in terms of each other through a solvable system322
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of nonlinear equations (see Section B.2.4) [26]. This allows us to mathematically formalize the323

execution of this task into an emergent property, where the emergent property statistics of the324

RNN activity are κr and ∆T and the emergent property values are the ground truth posterior325

mean µpost and variance σ2
post:326

E


κr

∆T

(κr − µpost)
2

(∆2
T − σ2

post)
2

 =


µpost

σ2
post

0.1

0.1

 (11)

We specify a substantial amount of variance in these emergent property statistics, so that the327

inferred distribution results in RNNs with a variety errors in their solutions to the gaussian posterior328

conditioning problem.329

We used EPI to learn distributions of RNN connectivity properties z =
[
g Mm Mn

]
executing330

Gaussian posterior conditioning given an input of y = 2 (see Section B.2.4) (Fig. 5B). The true331

Gaussian conditioning posterior for an input of y = 2 is µpost = 3 and σpost = 0.5. We examined the332

nature of the over- and under-estimation of the posterior means (Fig. 5B, left) and variances (Fig.333

5B, right) in the inferred distributions. There is rough symmetry in the Mm-Mn plane, suggesting334

a degeneracy in the product of Mm and Mn (Fig. 5B). The product of Mm and Mn strongly335

determines the posterior mean (Fig. 5B, left), and the random strength g is the most influential336

variable on the chaotic variance (Fig. 5B, right). Neither of these observations were obvious from337

what mathematical analysis is available in networks of this type (see Section B.2.4). While the338

relationship of the random strength to chaotic variance (and resultingly posterior variance in this339

problem) is well-known [3], the distribution admits a hypothesis: the estimation of the posterior340

mean by the RNN increases with the product of Mm and Mn.341

We tested this prediction by taking parameters z1 and z2 as representative samples from the positive342

and negative Mm-Mn quadrants, respectively. Instead of using the theoretical predictions shown343

in Figure 5B, we simulated finite-size realizations of these networks with 2,000 neurons (e.g. Fig.344

5C). We perturbed these parameter choices by the product MmMn clarifying that the posterior345

mean can be directly controlled in this way (Fig. 5D). Thus, EPI confers a clear picture of error in346

this computation: the product of the low rank vector means Mm and Mn modulates the estimated347

posterior mean while the random strength g modulates the estimated posterior variance. This348

novel procedure of inference on reduced parameterizations of RNNs conditioned on the emergent349

property of task execution is generalizable to other settings modeled in [26] like noisy integration350
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and context-dependent decision making (Fig. S4).351

4 Discussion352

4.1 EPI is a general tool for theoretical neuroscience353

Biologically realistic models of neural circuits are comprised of complex nonlinear differential equa-354

tions, making traditional theoretical analysis and statistical inference intractable. In contrast, EPI355

is capable of learning distributions of parameters in such models producing measurable signatures356

of computation. We have demonstrated its utility on biological models (STG), intermediate-level357

models of interacting genetically- and functionally-defined neuron-types (V1, SC), and the most358

abstract of models (RNNs). We are able to condition both deterministic and stochastic models on359

low-level emergent properties like spiking frequency of membrane potentials, as well as high-level360

cognitive function like posterior conditioning. Technically, EPI is tractable when the emergent361

property statistics are continuously differentiable with respect to the model parameters, which is362

very often the case; this emphasizes the general applicability of EPI.363

In this study, we have focused on applying EPI to low dimensional parameter spaces of models364

with low dimensional dynamical states. These choices were made to present the reader with a365

series of interpretable conclusions, which is more challenging in high dimensional spaces. In fact,366

EPI should scale reasonably to high dimensional parameter spaces, as the underlying technology has367

produced state-of-the-art performance on high-dimensional tasks such as texture generation [20]. Of368

course, increasing the dimensionality of the dynamical state of the model makes optimization more369

expensive, and there is a practical limit there as with any machine learning approach. Although,370

theoretical approaches (e.g. [26]) can be used to reason about the wholistic activity of such high371

dimensional systems by introducing some degree of additional structure into the model.372

There are additional technical considerations when assessing the suitability of EPI for a particu-373

lar modeling question. First and foremost, as in any optimization problem, the defined emergent374

property should always be appropriately conditioned (constraints should not have wildly different375

units). Furthermore, if the program is underconstrained (not enough constraints), the distribution376

grows (in entropy) unstably unless mapped to a finite support. If overconstrained, there is no pa-377

rameter set producing the emergent property, and EPI optimization will fail (appropriately). Next,378

one should consider the computational cost of the gradient calculations. In the best circumstance,379

there is a simple, closed form expression (e.g. Section B.1.1) for the emergent property statistic380
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Figure 5: Sources of error in an RNN solving a simple task. A. (left) A rank-1 RNN executing a

Gaussian posterior conditioning computation on µy. (right) Error in this computation can come

from over- or under-estimating the posterior mean or variance. B. EPI distribution of rank-1 RNNs

executing Gaussian posterior conditioning. Samples are colored by (left) posterior mean µpost = κr

and (right) posterior variance σ2
post = ∆T C. Finite-size network simulations of 2,000 neurons with

parameters z1 and z2 sampled from the inferred distribution. Activity along readout κr (cyan) is

stable despite chaotic fluctuations. D. The posterior mean computed by RNNs parameterized by

z1 and z2 pertrubed in the dimension of the product of Mm and Mn. Means and standard errors

are shown across 10 realizations of 2,000-neuron networks.
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given the model parameters. On the other end of the spectrum, many forward simulation iterations381

may be required before a high quality measurement of the emergent property statistic is available382

(e.g. Section B.2.1). In such cases, optimization will be expensive.383

4.2 Novel hypotheses from EPI384

In neuroscience, machine learning has primarily been used to revealed structure in large-scale neural385

datasets [52, 53, 54, 55, 56, 57] (see review, [15]). Such careful inference procedures are developed386

for these statistical models allowing precise, quantitative reasoning, which clarifies the way data387

informs knowledge of the model parameters. However, these inferable statistical models lack re-388

semblance to the underlying biology, making it unclear how to go from the structure revealed by389

these methods, to the neural mechanisms giving rise to it. In contrast, theoretical neuroscience has390

focused on careful mechanistic modeling and the production of emergent properties of computation.391

The careful steps of 1.) model design and 2.) emergent property definition, are followed by 3.)392

practical inference methods resulting in an opacque characterization of the way model parameters393

govern computation. In this work, we replaced this opaque procedure of parameter identification394

in theoretical neuroscience with emergent property inference, opening the door to careful inference395

in careful models of neural computation.396

Biologically realistic models of neural circuits often prove formidable to analyze. For example,397

consider the fact that we do not fully understand the (only) four-dimensional models of V1 [24]398

and SC [25]. Because analytical approaches to studying nonlinear dynamical systems become399

increasingly complicated when stepping from two-dimensional to three- or four-dimensional systems400

in the absence of restrictive simplifying assumptions [58], it is unsurprising that these models pose a401

challenge. In Section 3.3, we showed that EPI was far more informative about neuron-type input-402

responsivity than the predictions afforded through the available linear analytical methods. By403

flexibly conditioning this V1 model on different emergent properties, we performed an exploratory404

analysis of a model rather than a dataset, which generated a set of testable hypotheses, which405

were proved out. Of course, exploratory analyses can be directed towards formulating hypotheses406

of a specific form. For example, when interested in model parameter changes with behavioral407

performance, one can use EPI to condition on various levels of task accuracy as we did in Section408

3.4. This analysis identified experimentally testable predictions (proved out in-silico) of patterns409

of effective connectivity in SC that should be correlated with increased performance.410

In our final analysis, we presented a novel procedure for doing statistical inference on interpretable411
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parameterizations of RNNs executing simple tasks. Specifically, we analyzed RNNs solving a pos-412

terior conditioning problem in the spirit of [51]. This methodology relies on recently extended413

theory of responses in random neural networks with minimal structure [26]. While we focused on414

rank-1 RNNs, which were sufficient for solving this task, we can more generally use this approach415

to analyze rank-2 and greater RNNs. The ability to apply the probabilistic model selection toolkit416

to such black box models should prove invaluable as their use in neuroscience increases.417
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B Methods583

B.1 Emergent property inference (EPI)584

Emergent property inference (EPI) learns distributions of theoretical model parameters that pro-585

duce emergent properties of interest by combining ideas from maximum entropy flow networks586

(MEFNs) [20] and likelihood-free variational inference (LFVI) [21]. Consider model parameteri-587

zation z and data x which has an intractable likelihood p(x | z) defined by a model simulator of588

which samples are available x ∼ p(x | z). EPI optimizes a distribution qθ(z) (itself parameterized589

by θ) of model parameters z to produce an emergent property of interest B,590

B , Ez∼qθ
[
Ex∼p(x|z) [T (x)]

]
= µ (12)

Precisely, over the EPI distribution of parameters qθ(z) and distribution of simulated activity591

p(x | z), the emergent property statistics T (x) must equal the emergent property values µ on592

average. This is a viable way to represent emergent properties in theoretical models, as we have593

demonstrated in the main text, and enables the EPI optimization.594

With EPI, we use deep probability distributions to learn flexible approximations to model parameter595

distributions qθ(z). In deep probability distributions, a simple random variable w ∼ q0(w) is596

mapped deterministically via a sequence of deep neural network layers (f1, .. fl) parameterized by597

weights and biases θ to the support of the distribution of interest:598

z = fθ(ω) = fl(..f1(w)) (13)

Given a simulator defined by a theoretical model x ∼ p(x | z) and some emergent property of599

interest B, qθ(z) is optimized via the neural network parameters θ to find an optimally entropic600
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B.1 Emergent property inference (EPI) B METHODS

distribution q∗θ within the deep variational family Q producing the emergent property:601

q∗θ(z) = argmax
qθ∈Q

H(qθ(z))

s.t. Ez∼qθ
[
Ex∼p(x|z) [T (x)]

]
= µ

(14)

Since we are optimizing parameters θ of our deep probability distribution with respect to the entropy602

H(qθ(z), we will need to take gradients with respect to the log probability density of samples from603

the deep probability distribution.604

H(qθ(z)) =

∫
−qθ(z) log(qθ(z))dz = Ez∼qθ [− log(qθ(z))] = Ew∼q0 [− log(qθ(fθ(w)))] (15)

605

∇θH(qθ(z)) = Ew∼q0 [−∇θ log(qθ(fθ(w)))] (16)

This optimization is done using the approach of MEFN [20], using architectures for deep proba-606

bility distributions, called normalizing flows (see Section B.1.3), conferring a tractable calculation607

of sample probability. In EPI, this methodology for learning maximum entropy distributions is608

repurposed toward variational learning of model parameter distributions. Similar to LFVI [21], we609

are motivated to do variational learning in models with intractable likelihood functions, in which610

standard methods like stochastic gradient variational Bayes [6] or black box variational inference[59]611

are not tractable. Furthermore, EPI focuses on setting mathematically defined emergent property612

statistics to emergent property values of interest, whereas LFVI is focused on learning directly from613

datasets. Optimizing this objective is a technological challenge, the details of which we elaborate614

in Section B.1.2. Before going through those details, we ground this optimization in a toy example.615

B.1.1 Example: 2D LDS616

To gain intuition for EPI, consider a two-dimensional linear dynamical system model617

τ
dx

dt
= Ax (17)

with618

A =

a1 a2

a3 a4

 (18)

To do EPI with the dynamics matrix elements as the free parameters z =
[
a1 a2 a3 a4

]
(fixing619

τ = 1), the emergent property statistics T (x) were chosen to contain the first- and second-moments620

of the oscillatory frequency ω and the growth/decay factor d of the oscillating system. To learn the621

distribution of real entries of A that yield a distribution of d with mean zero with variance 0.252,622

27

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/837567doi: bioRxiv preprint first posted online Nov. 11, 2019; 

http://dx.doi.org/10.1101/837567
http://creativecommons.org/licenses/by-nc/4.0/


B.1 Emergent property inference (EPI) B METHODS

and oscillation frequency ω with mean 1 Hz with variance (0.1Hz)2, we selected the real part of623

the eigenvalue real(λ1) = d and imaginary component of imag(λ1) = 2πω as the emergent property624

statistics. λ1 is the eigenvalue of greatest real part when there is zero imaginary component, and625

alternatively of positive imaginary component, when the eigenvalues are complex conjugate pairs.626

Those emergent property statistics were then constrained to627

µ = E


real(λ1)

imag(λ1)

(real(λ1)− 0)2

(imag(λ1)− 2πω)2

 =


0.0

2πω

0.252

(2π0.1)2

 (19)

where ω = 1Hz. Unlike the models we presented in the main text, which calculate Ex∼p(x|z) [T (x)]628

via forward simulation, we have a closed form for λ1 of the dynamics matrix. The eigenvalues can629

be calculated using the quadratic formula:630

λ =
(a1+a4

τ )±
√

(a1+a4
τ )2 + 4(a2a3−a1a4τ )

2
(20)

where λ1 is the eigenvalue of 1
τA with greatest real part.631

Importantly, even though Ex∼p(x|z) [T (x)] is calculable directly via a closed form function and does632

not require simulation, we cannot derive the distribution q∗θ directly. This is due to the formally hard633

problem of the backward mapping: finding the natural parameters η from the mean parameters634

µ of an exponential family distribution [60]. Instead, we can use EPI to learn the linear system635

parameters producing such a band of oscillations (Fig. S1B).636

Even this relatively simple system has nontrivial (though intuitively sensible) structure in the637

parameter distribution. To validate our method (further than that of the underlying technology on638

a ground truth solution [20]) we analytically derived the contours of the probability density from the639

emergent property statistics and values (Fig. S2). In the a1−a4 plane, the black line at real(λ1) =640

a1+a4
2 = 0, and the dotted black line at the standard deviation real(λ1) = a1+a4

2 ±0.25, and the grey641

line at twice the standard deviation real(λ1) = a1+a4
2 ±0.5 follow the contour of probability density642

of the samples. (Fig. 2A). The distribution precisely reflects the desired statistical constraints and643

model degeneracy in the sum of a1 and a4. Intuitively, the parameters equivalent with respect to644

emergent property statistic real(λ1) have similar log densities.645

To explain the structure in the bimodality of the EPI distribution, we examined the imaginary646
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A B

C

D

model: 2D LDS

parameters

Fig. S1: A. Two-dimensional linear dynamical system model, where real entries of the dynamics

matrix A are the parameters. B. The DSN distribution for a two-dimensional linear dynamical

system with τ = 1 that produces an average of 1Hz oscillations with some small amount of

variance. C. Entropy throughout the optimization. At the beginning of each augmented

Lagrangian epoch (5,000 iterations), the entropy dipped due to the shifted optimization manifold

where emergent property constraint satisfaction is increasingly weighted. D. Emergent property

moments throughout optimization. At the beginning of each augmented Lagrangian epoch, the

emergent property moments move closer to their constraints.
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A B

Fig. S2: A. Probability contours in the a1 − a4 plane can be derived from the relationship to

emergent property statistic of growth/decay factor. B. Probability contours in the a2 − a3 plane

can be derived from relationship to the emergent property statistic of oscillation frequency.

component of λ1. When real(λ1) = a1+a4
2 = 0, we have647

imag(λ1) =


√

a1a4−a2a3
τ , if a1a4 < a2a3

0 otherwise

(21)

When τ = 1 and a1a4 > a2a3 (center of distribution above), we have the following equation for the648

other two dimensions:649

imag(λ1)2 = a1a4 − a2a3 (22)

Since we constrained Ez∼qθ [imag(λ)] = 2π (with ω = 1), we can plot contours of the equation650

imag(λ1)2 = a1a4 − a2a3 = (2π)2 for various a1a4 (Fig. S2A). If σ1,4 = Ez∼qθ(|a1a4 − Eqθ [a1a4]|),651

then we plot the contours as a1a4 = 0 (black), a1a4 = −σ1,4 (black dotted), and a1a4 = −2σ1,4652

(grey dotted) (Fig. S2B). This validates the curved structure of the inferred distribution learned653

through EPI. We take steps in negative standard deviation of a1a4 (dotted and gray lines), since654

there are few positive values a1a4 in the learned distribution. Subtler model-emergent property655

combinations will have even more complexity, further motivating the use of EPI for understanding656

these systems. As we expect, the distribution results in samples of two-dimensional linear systems657

oscillating near 1Hz (Fig. S3).658
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Fig. S3: Sampled dynamical system trajectories from the EPI distribution. Each trajectory is

initialized at x(0) =
[√

2
2 −

√
2

2

]
.

B.1.2 Augmented Lagrangian optimization659

To optimize qθ(z) in Equation 14, the constrained optimization is performed using the augmented660

Lagrangian method. The following objective is minimized:661

L(θ; η, c) = −H(qθ) + η>R(θ) +
c

2
||R(θ)||2 (23)

where R(θ) = Ez∼qθ
[
Ex∼p(x|z) [T (x)− µ]

]
, η ∈ Rm are the Lagrange multipliers (which are closely662

related to the natural parameters of exponential families (see Section B.1.4)) and c is the penalty663

coefficient. For a fixed (η, c), θ is optimized with stochastic gradient descent. A low value of664

c is used initially, and increased during each augmented Lagrangian epoch, which is a period of665

optimization with fixed η and c for a given number of stochastic optimization iterations. Similarly,666

η is tuned each epoch based on the constraint violations. For the linear two-dimensional system667

(Fig. S1C), optimization hyperparameters are initialized to c1 = 10−4 and η1 = 0. The penalty668

coefficient is updated based on the result of a hypothesis test regarding the reduction in constraint669

violation. The p-value of E[||R(θk+1)||] > γE [||R(θk)||] is computed, and ck+1 is updated to βck670

with probability 1− p. Throughout the study, β = 4.0 and γ = 0.25 were used. The other update671

rule is ηk+1 = ηk + ck
1
n

∑n
i=1(T (x(i))− µ). In this example, each augmented Lagrangian epoch ran672

for 2,000 iterations. We consider the optimization to have converged when a null hypothesis test of673

constraint violations being zero is accepted for all constraints at a significance threshold 0.05. This674

is the dotted line on the plots below depicting the optimization cutoff of EPI for the 2-dimensional675

linear system.676

The intention is that c and η start at values encouraging entropic growth early in optimization.677
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Then, as they increase in magnitude with each training epoch, the constraint satisfaction terms678

are increasingly weighted, resulting in a decrease in entropy. If the optimization is left to continue679

running, and structural pathologies in the distribution may be introduced.680

B.1.3 Normalizing flows681

Deep probability models typically consist of several layers of fully connected neural networks.682

When each neural network layer is restricted to be a bijective function, the sample density can be683

calculated using the change of variables formula at each layer of the network. For z′ = f(z),684

q(z′) = q(f−1(z′))

∣∣∣∣det
∂f−1(z′)

∂z′

∣∣∣∣ = q(z)

∣∣∣∣det
∂f(z)

∂z

∣∣∣∣−1

(24)

However, this computation has cubic complexity in dimensionality for fully connected layers. By685

restricting our layers to normalizing flows [17] – bijective functions with fast log determinant Ja-686

cobian computations, we can tractably optimize deep generative models with objectives that are a687

function of sample density, like entropy. Most of our analyses use real NVP [61], which have proven688

effective in our architecture searches, and have the advantageous features of fast sampling and fast689

probability density evaluation.690

B.1.4 Emergent property inference as variational inference in an exponential family691

Consider the goal of doing variational inference with an exponential family posterior distribution692

p(z | x). We use the following abbreviated notation to collect the base measure b(z) and sufficient693

statistics T (z) into T̃ (z) and likewise concatenate a 1 onto the end of the natural parameter η̃(x).694

The log normalizing constant A(η(x)) remains unchanged.695

p(z | x) = b(z) exp
(
η(x)>T (z)−A(η(x))

)
= exp


η(x)

1

> T (z)

b(z)

−A(η(x))


= exp

(
˜η(x)
>
T̃ (z)−A(η(x))

) (25)

Variational inference with an exponential family posterior distribution uses optimization to mini-696

mize the following divergence [62]:697

q∗θ = argmin
qθ∈Q

KL(qθ || p(z | x)) (26)
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qθ(z) is the variational approximation to the posterior with variational parameters θ. We can write698

this KL divergence in terms of entropy of the variational approximation.699

KL(qθ || p(z | x)) = Ez∼qθ [log(qθ(z))]− Ez∼qθ [log(p(z | x))] (27)

700

= −H(qθ)− Ez∼qθ
[
η̃(x)>T̃ (z)−A(η(x))

]
(28)

As far as the variational optimization is concerned, the log normalizing constant is independent of701

qθ(z), so it can be dropped.702

argmin
qθ∈Q

KL(qθ || p(z | x)) = argmin
qθ∈Q

−H(qθ)− Ez∼qθ
[
η̃(x)>T̃ (z)

]
(29)

Further, we can write the objective in terms of the first moment of the sufficient statistics µ =703

Ez∼p(z|x) [T (z)].704

= argmin
qθ∈Q

−H(qθ)− Ez∼qθ
[
η̃(x)>

(
T̃ (z)− µ

)]
+ ˜η(x)

>
µ (30)

705

= argmin
qθ∈Q

−H(qθ)− Ez∼qθ
[
η̃(x)>

(
T̃ (z)− µ

)]
(31)

In comparison, in emergent property inference (EPI), we’re solving the following problem.706

q∗θ(z) = argmax
qθ∈Q

H(qθ(z)), s.t. Ez∼qθ
[
Ex∼p(x|z) [T (x)]

]
= µ (32)

The Lagrangian objective (without the augmentation) is707

q∗θ = argmin
qθ∈Q

−H(qθ) + η>opt

(
Ez∼qθ

[
T̃ (z)

]
− µ

)
(33)

As the optimization proceeds, η>opt should converge to the natural parameter η̃(x) through its708

adaptations in each epoch (see Section B.1.2).709

The derivation of the natural parameter η̃(x) of an exponential family distribution from its mean710

parameter µ is referred to as the backward mapping and is formally hard to identify [60]. Since711

this backward mapping is deterministic, we can replace the notation of p(z | x) with p(z | B)712

conceptualizing an inferred distribution that obeys emergent property B (see Section B.1).713

B.2 Theoretical models714

In this study, we used emergent property inference to examine several models relevant to theoretical715

neuroscience. Here, we provide the details of each model and the related analyses.716
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B.2.1 Stomatogastric ganglion717

We analyze how the parameters z =
[
gel gsynA

]
govern the emergent phenomena of network718

syncing in a model of the stomatogastric ganglion (STG) shown in Figure 1A with activity x =719

[xf1, xf2, xhub, xs1, xs2]. Each neuron’s membrane potential xα(t) for α ∈ {f1, f2, hub, s1, s2} is the720

solution of the following differential equation:721

Cm
dxα
dt

= − [hleak(x; z) + hCa(x; z) + hK(x; z) + hhyp(x; z) + helec(x; z) + hsyn(x; z)] (34)

The membrane potential of each neuron is affected by the leak, calcium, potassium, hyperpolariza-722

tion, electrical and synaptic currents, respectively, which are functions of all membrane potentials723

and the conductance parameters z. The capacitance of the cell membrane was set to Cm = 1nF .724

Specifically, the currents are the difference in the neuron’s membrane potential and that current725

type’s reversal potential multiplied by a conductance:726

hleak(x; z) = gleak(xα − Vleak) (35)
727

helec(x; z) = gel(x
post
α − xpreα ) (36)

728

hsyn(x; z) = gsynS
pre
∞ (xpostα − Vsyn) (37)

729

hCa(x; z) = gCaM∞(xα − VCa) (38)
730

hK(x; z) = gKN(xα − VK) (39)
731

hhyp(x; z) = ghH(xα − Vhyp) (40)

The reversal potentials were set to Vleak = −40mV , VCa = 100mV , VK = −80mV , Vhyp = −20mV ,732

and Vsyn = −75mV . The other conductance parameters were fixed to gleak = 1 × 10−4µS. gCa,733

gK , and ghyp had different values based on fast, intermediate (hub) or slow neuron. Fast: gCa =734

1.9×10−2, gK = 3.9×10−2, and ghyp = 2.5×10−2. Intermediate: gCa = 1.7×10−2, gK = 1.9×10−2,735

and ghyp = 8.0× 10−3. Intermediate: gCa = 8.5× 10−3, gK = 1.5× 10−2, and ghyp = 1.0× 10−2.736

Furthermore, the Calcium, Potassium, and hyperpolarization channels have time-dependent gating737

dynamics dependent on steady-state gating variables M∞, N∞ and H∞, respectively.738

M∞ = 0.5

(
1 + tanh

(
xα − v1

v2

))
(41)

739

dN

dt
= λN (N∞ −N) (42)

740

N∞ = 0.5

(
1 + tanh

(
xα − v3

v4

))
(43)

34
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741

λN = φN cosh

(
xα − v3

2v4

)
(44)

742

dH

dt
=

(H∞ −H)

τh
(45)

743

H∞ =
1

1 + exp
(
xα+v5
v6

) (46)

744

τh = 272−

 −1499

1 + exp
(
−xα+v7

v8

)
 (47)

where we set v1 = 0mV , v2 = 20mV , v3 = 0mV , v4 = 15mV , v5 = 78.3mV , v6 = 10.5mV ,745

v7 = −42.2mV , v8 = 87.3mV , v9 = 5mV , and vth = −25mV . These are the same parameter746

values used in [23].747

Finally, there is a synaptic gating variable as well:748

S∞ =
1

1 + exp
(
vth−xα
v9

) (48)

When the dynamic gating variables are considered, this is actually a 15-dimensional nonlinear749

dynamical system.750

In order to measure the frequency of the hub neuron during EPI, the STG model was simulated751

for T = 500 time steps of dt = 25ms. In EPI, since gradients are taken through the simulation752

process, the number of time steps are kept modest if possible. The chosen dt and T were the753

most computationally convenient choices yielding accurate frequency measurement. Poor resolution754

afforded by the discrete Fourier transform motivated the use of an alternative basis of complex755

exponentials to measure spiking frequency. Instead, we used a basis of complex exponentials with756

frequencies from 0.0-1.0 Hz at 0.01Hz resolution, Φ = [0.0, 0.01, ..., 1.0]>757

Another consideration was that the frequency spectra of the neuron membrane potentials had sev-758

eral peaks. High-frequency sub-threshold activity obscured the maximum frequency measurement759

in the complex exponential basis. Accordingly, subthreshold activity was set to zero, and the760

whole signal was low-pass filtered with a moving average window of length 20. The signal was761

subsequently mean centered. After this pre-processing, the maximum frequency in the filter bank762

accurately reflected the firing frequency.763

Finally, to differentiate through the maximum frequency identification, we used a sum-of-powers764

normalization. Let Xα ∈ C|Φ| be the complex exponential filter bank dot products with the signal765
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xα ∈ RN , where α ∈ {f1, f2, hub, s1, s2}. The “frequency identification” vector is766

vα =
|Xα|β∑N

k=1 |Xα(k)|β
(49)

The frequency is then calculated as ωα = v>αΦ with β = 100.767

Network syncing, like all other emergent properties in this work, are defined by the emergent768

property statistics and values. The emergent property statistics are the first- and second-moments769

of the firing frequencies. The first moments are set to 0.542Hz, while the second moments are set770

to 0.025Hz2.771

E



ωf1

ωf2

ωhub

ωs1

ωs2

(ωf1 − 0.542)2

(ωf2 − 0.542)2

(ωhub − 0.542)2

(ωs1 − 0.542)2

(ωs2 − 0.542)2



=



0.542

0.542

0.542

0.542

0.542

0.0252

0.0252

0.0252

0.0252

0.0252



(50)

For EPI in Fig 2C, we used a real NVP architecture with two coupling layers. Each coupling layer772

had two hidden layers of 10 units each, and we mapped onto a support of z ∈

0

0

 ,
10

8

 (the773

same considered in [23]). We have shown the EPI optimization that converged with maximum774

entropy across 5 random seeds and augmented Lagrangian coefficient initializations of c0 ∈ {10}.775

We calculated the Hessian at the mode of the inferred EPI distribution. The Hessian of a proba-776

bility model is the second order gradient of the log probability density log qθ(z) with respect to the777

parameters z: ∂2 log qθ(z)
∂z∂z>

. With EPI, we can examine the Hessian, which is analytically available778

throughout the deep probability distribution, at a given parameter choice to determine what di-779

mensions of parameter space are sensitive (high magnitude eigenvalue), and which are degenerate780

(low magnitude eigenvalue) with respect to the emergent property produced. In Figure 1B, the781

eigenvectors of the Hessian v1 and v2 are shown evaluated at the mode of the distribution. The782

length of the arrows is inversely proportional to the square root of absolute value of their eigen-783

values λ1 = −147.2 and λ2 = −19.70. We quantitatively measured the sensitivity of the model784

with respect to network syncing along the eigenvectors of the Hessian (Fig. 1B, inset). Sensitivity785
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was measured as the slope coefficient of linear regression fit to network syncing error (the sum of786

squared differences of each neuron’s frequency from 0.542Hz) as a function of perturbation mag-787

nitude (from 0 to 0.4) away from the mode along both orientations indicated by the eigenvector.788

These sensitivities were compared to all other dimensions of parameter space, revealing that the789

Hessian eigenvectors indeed identified the directions of greatest sensitivity and degeneracy.790

B.2.2 Primary visual cortex791

The dynamics of each neural populations average rate x =
[
xE xP xS xV

]>
are given by:792

τ
dx

dt
= −x+ [Wx+ h]n+ (51)

Some neuron-types largely lack synaptic projections to other neuron-types [43], and it is popular793

to only consider a subset of the effective connectivities [24, 44, 45].794

W =


WEE WEP WES 0

WPE WPP WPS 0

WSE 0 0 WSV

WV E WV P WV S 0

 (52)

By consolidating information from many experimental datasets, Billeh et al. [47] produce estimates795

of the synaptic strength (in mV)796

M =


0.36 0.48 0.31 0.28

1.49 0.68 0.50 0.18

0.86 0.42 0.15 0.32

1.31 0.41 0.52 0.37

 (53)

and connection probability797

C =


0.16 0.411 0.424 0.087

0.395 .451 0.857 0.02

0.182 0.03 0.082 0.625

0.105 0.22 0.77 0.028

 (54)

Multiplying these connection probabilities and synaptic efficacies gives us an effective connectivity798
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matrix:799

Wfull = C �M =


0.16 0.411 0.424 0.087

0.395 .451 0.857 0.02

0.182 0.03 0.082 0.625

0.105 0.22 0.77 0.028

 (55)

We used the entries of this full effective connectivity matrix that are not considered to be ineffectual800

(Equation 52).801

We look at how this four-dimensional nonlinear dynamical model of V1 responds to different inputs,802

and compare the predictions of the linear response to the approximate posteriors obtained through803

EPI. The input to the system is the sum of a baseline input b =
[
1 1 1 1

]>
and a differential804

input dh:805

h = b+ dh (56)

All simulations of this system had T = 100 time points, a time step dt = 5ms, and time constant806

τ = 20ms. And the system was initialized to a random draw x(0)i ∼ N (1, 0.01).807

We can describe the dynamics of this system more generally by808

ẋi = −xi + f(ui) (57)

where the input to each neuron is809

ui =
∑
j

Wijxj + hi (58)

Let Fij = γiδ(i, j), where γi = f ′(ui). Then, the linear response is810

dxss
dh

= F (W
dxss
dh

+ I) (59)

which is calculable by811

dxss
dh

= (F−1 −W )−1 (60)

This calculation is used to produce the magenta lines in Figure 2C, which show the linearly predicted812

inputs that generate a response from two standard deviations (of B) below and above y.813

The emergent property we considered was the first and second moments of the change in steady814

state rate dxss between the baseline input h = b and h = b+ dh. We use the following notation to815

indicate that the emergent property statistics were set to the following values:816

B(α, y) , E

 dxα,ss

(dxα,ss − y)2

 =

 y

0.012

 (61)
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In the final analysis for this model, we sweep the input one neuron at a time away from the mode817

of each inferred distributions dh∗ = z∗ = argmaxz log qθ(z | B(α, 0.1). The differential responses818

δxα,ss are examined at perturbed inputs h = b + dh∗ + δhαûα where ûα is a unit vector in the819

dimension of α and δhα ∈ [−15, 15].820

For each B(α, y) with α ∈ {E,P, S, V } and y ∈ {0.1, 0.5}, we ran EPI with five different random821

initial seeds using an architecture of four coupling layers, each with two hidden layers of 10 units.822

We set c0 = 105. The support of the learned distribution was restricted to zi ∈ [−5, 5].823

B.2.3 Superior colliculus824

In the model of Duan et al [25], there are four total units: two in each hemisphere corresponding to825

the Pro/Contra and Anti/Ipsi populations. They are denoted as left Pro (LP), left Anti (LA), right826

Pro (RP) and right Anti (RA). Each unit has an activity (xα) and internal variable (uα) related827

by828

xα(t) =

(
1

2
tanh

(
uα(t)− ε

ζ

)
+

1

2

)
(62)

where α ∈ {LP,LA,RA,RP} ε = 0.05 and ζ = 0.5 control the position and shape of the nonlin-829

earity, respectively.830

We order the elements of x and u in the following manner831

x =


xLP

xLA

xRP

xRA

 u =


uLP

uLA

uRP

uRA

 (63)

The internal variables follow dynamics:832

τ
du

dt
= −u+Wx+ h+ σdB (64)

with time constant τ = 0.09s and Gaussian noise σdB controlled by the magnitude of σ = 1.0. The833

weight matrix has 8 parameters sWP , sWA, vWPA, vWAP , hWP , hWA, dWPA, and dWAP (Fig.834

4B).835

W =


sWP vWPA hWP dWPA

vWAP sWA dWAP hWA

hWP dWPA sWP vWPA

dWAP hWA vWAP sWA

 (65)
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The system receives five inputs throughout each trial, which has a total length of 1.8s.836

h = hrule + hchoice-period + hlight (66)

There are rule-based inputs depending on the condition,837

hP,rule(t) =


IP,rule

[
1 0 0 1

]>
, if t ≤ 1.2s

0, otherwise

(67)

838

hA,rule(t) =


IA,rule

[
0 1 1 0

]>
, if t ≤ 1.2s

0, otherwise

(68)

a choice-period input,839

hchoice(t) =


Ichoice

[
1 1 1 1

]>
, if t > 1.2s

0, otherwise

(69)

and an input to the right or left-side depending on where the light stimulus is delivered.840

hlight(t) =



Ilight

[
1 1 0 0

]>
, if t > 1.2s and Left

Ilight

[
0 0 1 1

]>
, if t > 1.2s and Right

0, t ≤ 1.2s

(70)

The input parameterization was fixed to IP,rule = 10, IA,rule = 10, Ichoice = 2, and Ilight = 1841

To produce a Bernoulli rate of pLP in the Left, Pro condition, let p̂i be the empirical average steady842

state (ss) response (final xLP at end of task) over M=500 Gaussian noise draws for a given SC843

model parameterization zi:844

p̂i = EσdB [xLP | s = L, c = P, z = zi] =
1

M

M∑
j=1

xLP (s = L, c = P, z = zi, σdBj) (71)

where from here on xα denotes the steady state activity at the end of the trial. For the first845

emergent property statistic, the average over EPI samples (from qθ(z)) is set to the desired value846

pLP :847

Ezi∼qφ [EσdB [xLP,ss | s = L, c = P, z = zi]] = Ezi∼qφ [p̂i] = pLP (72)

For the next emergent property statistic, we ask that the variance of the steady state responses848

across Gaussian draws, is the Bernoulli variance for the empirical rate p̂i.849

Ez∼qφ
[
σ2
err

]
= 0 (73)
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850

σ2
err = V arσdB [xLP | s = L, c = P, z = zi]− p̂i(1− p̂i) (74)

We have an additional constraint that the Pro neuron on the opposite hemisphere should have the851

opposite value (0 and 1). We can enforce this with a final constraint:852

Ez∼qφ [dP ] = EσdB
[
(xLP − xRP )2 | s = L, c = P, z = zi

]
= 1 (75)

Since the maximum variance of a random variable bounded from 0 to 1 is the Bernoulli variance853

p̂(1 − p̂), and the maximum squared difference between to variables bounded from 0 to 1 is 1, we854

do not need to control the second moment of these test statistics. In practice, these variables are855

dynamical system states and can only exponentially decay (or saturate) to 0 (or 1), so the Bernoulli856

variance error and squared difference constraints can only be undershot. This is important to be857

mindful of when evaluating the convergence criteria. Instead of using our usual hypothesis testing858

criteria for convergence to the emergent property, we set a slack variable threshold only for these859

technically infeasible emergent property values to 0.05.860

Training DSNs to learn distributions of dynamical system parameterizations that produce Bernoulli861

responses at a given rate (with small variance around that rate) was harder to do than expected.862

There is a pathology in this optimization setup, where the learned distribution of weights is bimodal863

attributing a fraction p of the samples to an expansive mode (which always sends xLP to 1), and a864

fraction 1−p to a decaying mode (which always sends xLP to 0). This pathology was avoided using865

an inequality constraint prohibiting parameter samples that resulted in low variance of responses866

across noise.867

In total, the emergent property of rapid task switching at accuracy level p was defined as868

B(p) ,



p̂P

p̂A

(p̂P − p)2

(p̂A − p)2

σ2
P,err

σ2
A,err

dP

dA



=



p

p

0.152

0.152

0

0

1

1



(76)

For each accuracy level p, we ran EPI for 10 different random seeds and selected the maximum869

entropy solution using an architecture of 10 planar flows with c0 = 2. The support of z was R8.870
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B.2.4 Rank-1 RNN871

Recent work establishes a link between RNN connectivity weights and the resulting dynamical872

responses of the network, using dynamic mean field theory (DMFT) [26]. Specifically, DMFT873

describes the properties of activity in infinite-size neural networks given a distribution on the874

connectivity weights. In such a model, the connectivity of a rank-1 RNN (which was sufficient for875

the Gaussian posterior conditioning task), has weight matrix W , which is the sum of a random876

component with strength determined by g and a structured component determined by the outer877

product of vectors m and n:878

W = gχ+
1

N
mn>, (77)

where χij ∼ N (0, 1
N ), and the entries of m and n are drawn from Gaussian distributions mi ∼879

N (Mm, 1) and ni ∼ N (Mn, 1). From such a parameterization, this theory produces consistency880

equations for the dynamic mean field variables in terms of parameters like g, Mm, and Mn, which we881

study in Section 3.5. That is the dynamic mean field variables (e.g. the activity along a vector κv,882

the total variance ∆0, structured variance ∆∞, and the chaotic variance ∆T ) are written as functions883

of one another in terms of connectivity parameters. The values of these variables can be used884

obtained using a nonlinear system of equations solver. These dynamic mean field variables are then885

cast as task-relevant variables with respect to the context of the provided inputs. Mastrogiuseppe et886

al. designed low-rank RNN connectivities via minimalist connectivity parameters to solve canonical887

tasks from behavioral neuroscience.888

We consider the DMFT equation solver as a black box that takes in a low-rank parameterization889

z (e.g. z =
[
g Mm Mn

]
) and outputs the values of the dynamic mean field variables, of which890

we cast κr and ∆T as task-relevant variables µpost and σ2
post in the Gaussian posterior conditioning891

toy example. Importantly, the solution produced by the solver is differentiable with respect to the892

input parameters, allowing us to use DMFT to calculate the emergent property statistics in EPI893

to learn distributions on such connectivity parameters of RNNs that execute tasks.894

Specifically, we solve for the mean field variables κr, κn, ∆0 and ∆∞, where the readout is nominally895

chosen to point in the unit orthant r =
[
1 ... 1

]>
. The consistency equations for these variables896
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in the presence of a constant input h = y − (n−Mn) can be derived following [26] are897

κr = G1(κr, κn,∆0,∆∞) = Mmκn + y

κn = G2(κr, κn,∆0,∆∞) = Mn〈[φi]〉+ 〈[φ′i]〉

∆2
0 −∆2

∞
2

= G3(κr, κn,∆0,∆∞) = g2
(∫
DzΦ2(κr +

√
∆0z)−

∫
Dz
∫
DxΦ(κr +

√
∆0 −∆∞x+

√
∆∞z)

)
+(κ2n + 1)(∆0 −∆∞)

∆∞ = G4(κr, κn,∆0,∆∞) = g2
∫
Dz
[∫
Dxφ(κr +

√
∆0 −∆∞x+

√
∆∞z

]2
+ κ2n + 1

(78)

where here z is a gaussian integration variable. We can solve these equations by simulating the898

following Langevin dynamical system to a steady state.899

l(t) =
∆0(t)2 −∆∞(t)2

2

∆0(t) =
√

2x(t) + ∆∞(t)2

dκr(t)

dt
= −κr(t) + F (κr(t), κn(t),∆0(t),∆∞(t))

dκn(t)

dt
= −κn +G(κr(t), κn(t),∆0(t),∆∞(t))

dl(t)

dt
= −l(t) +H(κr(t), κn(t),∆0(t),∆∞(t))

d∆∞(t)

dt
= −∆∞(t) + L(κr(t), κn(t),∆0(t),∆∞(t))

(79)

Then, the chaotic variance, which is necessary for the Gaussian posterior conditioning example, is900

simply calculated via901

∆T = ∆0 −∆∞ (80)

In addition to the Gaussian posterior conditioning example in Section 3.5, we modeled two tasks902

from Mastrogiuseppe et al.: noisy detection and context-dependent discrimination. We used the903

same theoretical equations and task setups described in their study.904

B.3 Supplementary Figures905
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A

B

noisy detection

context-dependent discrimination

Fig. S4: A. EPI for rank-1 networks doing noisy discrimination. B. EPI for rank-2 networks doing

context-dependent discrimination. See [26] for theoretical equations and task description.
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